Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Infect Dis ; 122: 930-935, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35840097

RESUMO

OBJECTIVES: Qualitative real-time polymerase chain reaction tests are not designed to provide quantitative or semiquantitative results because cycle threshold (Ct) values are not normalized to standardized controls of known concentration. The aim of this study was to characterize SARS-CoV-2 viral loads based on Ct values, using the QIAstat-Dx® Respiratory SARS-CoV-2 Panel. METHODS: Different lineages of SARS-CoV-2 clinical samples and the World Health Organization international standard were used to assess the linearity of the QIAstat-Dx Respiratory SARS-CoV-2 Panel. Limit of detection for the different lineages was characterized. RESULTS: Comparable efficiencies and linearity for all samples resulted in R2 ≥0.99, covering a dynamic range of 1,000,000-100 copies/mL for the SARS-CoV-2 assay, showing linear correlation between Ct values and viral load down to 300 copies/mL. CONCLUSION: The SARS-CoV-2 Ct values provided by the QIAstat-Dx® Respiratory SARS-CoV-2 Panel could be used as a surrogate for viral load given the linear correlation between Ct values and viral concentration down to limit of detection. This panel allows to obtain reproducible Ct values for SARS-CoV-2 ribonucleic acid downstream of the sample collection, reducing the sample-to-Ct workflow variability. Ct values can help provide a reliable assessment and comparison of viral loads in patients when tested with the QIAstat-Dx Respiratory SARS-CoV-2 Panel.


Assuntos
COVID-19 , SARS-CoV-2 , COVID-19/diagnóstico , Teste para COVID-19 , Humanos , Sistema Respiratório , Carga Viral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...